ON THE EXISTENCE OF A NEW CLASS OF
CONTACT METRIC MANIFOLDS

THEMIS KOUFOGIORGOS and CHARALAMBOS TSICHLIAS

ABSTRACT. A new class of 3-dimensional contact metric manifolds is found.

Moreover it is proved that there are no such manifolds in dimensions greater than 3.

1. Introduction. Let M be a Riemannian manifold. The tangent sphere bundle 73 M
admits a contact metric structure (¢, £,7,g) and so Ty M together with this structure is a
contact metric manifold [1]. If M is of constant sectional curvature, then the curvature
tensor R of Ty M (¢, &, 1, g) satisfies the condition

(%) R(z,y)¢ = &ln(y)x — n(z)y] + pln(y)hz — n(z)hy]

for any x,yeX(Ty M), where 2h is the Lie derivative of ¢ with respect to £ and k, u are
constant. Moreover, the converse is also true [3]. This class of contact metric manifolds
is especially interesting, because apart from its other characteristics, it contains the well
known Sasakian manifolds. In [5],[6],[7] are studied contact metric manifolds satisfying
(*) but with &, s smooth functions not necessarily constant. In these papers it is proved
that, with an extra assumption, the functions %, must be constant. On the other hand,
up to now, we didn't know any example of a contact metric manifold satisfying (*) and
with &, s non constant smooth functions. The following question comes up naturally. Do
there exist contact metric manifolds satisfying (*) with &, u non-constant smooth functions,
independent of the choice of vector fields z,y ? In this paper we give a negative answer
to the above question for dimensions > 3. For dimension 3 we give an affirmative answer,
through the construction of examples.

2. Preliminaries. A differentiable (2m + 1)-dimensional manifold M 2m+1 jg called a
contact manifold if it carries a global differential 1-form n such that nA(dn)™ # 0 everywhere
on M2™+1 It is known that a contact manifold admits an almost contact metric structure
(6,£,m,9), i.e. a global vector field &, which will be called the characteristic vector field, a
(1,1) tensor field ¢ and a Riemannian metric g such that

(2.1) ¢ =-Id+n®¢& né) =1,

(2.2) | g(¢z, ¢y) = g(z,y) —n(z)n(y),
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for all vector fields z,y on M?™*+!. Moreover, (¢, £, 7, g) can be chosen such that dn(z,y) =
g(z, ¢y) and thus the structure is called a contact metric structure and the manifold M2m+1
a contact metric manifold. Equations (2.1) and (2.2) imply

(23) #§=0, noop= 0, dn(& 37) =0.

Denoting by £ and R, Lie differentiantion and the curvature tensor respectively, the oper-
ators [ and h are defined by

(2.4) 5 = Rin B, hoe %(ﬁng')):r:.
The (1,1) tensors h and [ are self-adjoint and satisfy

(2.5) h&=0, 1£=0, hé+oh=0.

If V is the Riemannian connection of g, equations (2.1)-(2.5) imply

(2.6) V& = —¢z — dhaz,
(2.7) ¢l —1=2(4” + h?),
(2.8) Ve =0,

(2.9) Veh = ¢ — ¢l — ph.

A contact structure on M?™*! gives rise to an almost complex structure on the product
M?m+1 x R, If this structure is integrable, then the contact metric manifold is said to be
Sasakian. Equivalently, a contact metric manifold is Sasakian if and only if

(2.10) R(z,y)¢ = n(y)z — n(z)y.

For more details concerning contact manifolds the reader is referred to [1].

3. Main results. Let M?>™*1(¢,£ 7, g) be a contact metric manifold. We suppose
that

(3.1) R(z,y)¢ = kln(y)z — n(z)y] + uln(y)hz — n(z)hy),

for some smooth functions x and x on M independent of the choice of vector fields z and
y. We call such a manifold M, a generalized (k, p)-contact metric manifold. In the special
case #, i = constant, the manifold will be called simply a (x, u)-contact metric manifold.

The 3-dimensional case, (m=1). Now, we are going to construct examples of 3-dime-
nsional generalized (k,p)-contact metric manifolds, which are not (%, p)-contact metric
manifolds.

Example 1. We consider the 3-dimensional manifold M — {(z1, T2, z3)eR3|z3 # 0},
where (21, 9, z3) are the standard coordinates in R3. The vector fields
a 8  2z; &8 1 & 1 9

ey = —2r9x3— +

& =g R T T 3Aa 8= —F_—
3.7:1 ’ 3271 .’1333 a.’IJg 2732 8:1?3 ? I3 3:2:2
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are linearly independent at each point of M. Let g be the Riemannian metric defined by
gles,e;) = 6;5,4,5 = 1,2,3. Let V be the Riemannian connection and R the curvature
tensor of g. We easily get

2 1
[e1, €] = —5€3, [e2, €3] = 2e; + —3€3, [e3, 811 =0.
T3 I3

Let 1 be the 1-form defined by n(z) = g(z,e1) for any zeX(M). Because n Adn # 0
everywhere on M, n is a contact form. Let ¢ be the (1,1)-tensor fleld, defined by ¢e; =
0, ¢es =e3, ¢ez = —ey. Using the linearity of ¢, dn and g we find n(e1) = 1, P’z =
—otn(z)er,  dn(zw) = g(z,¢w) and g(pz, ¢w) = g(z,w)—n(2)n(w) for any z, weX (M).
Hence (¢, e1,7,g) defines a contact metric structure on M and so M together with this
structure is a contact metric manifold.

Putting £ = e1, T = ey, px = e3 and using the well known formula

QQ(VU‘Zf ‘UJ) == yg(zv 'UJ) + zg(w,y) - wy(yv Z) - g(y': [Z, w]) - 9(21 {ya 'LU]) *+ g(wa [y: Z])
we calculate
Vb= —(1+ - )gm ualieilil — 13)3: Ver = (-1+ 2 )z;&::: Vedie =0 xig)x

1
Vo =0, Vzcﬁz—(l-f- )6 Vouz = (-1 + 2)5 3¢x, Ve = 3%
I3 3

Therefore for the tensor field h we get hé =0, hz = Az, h¢z = —A¢x, where A\ = .

T3

y 2
Now, putting p = 2(1 — 5:17) and kK = 33;4—1 we finally get
3 3

R(z,£)¢ = s(n(&)x — n(x)§) + p(n(§)hx — n(z)hE)
R(¢z,£)¢ = w(n(&)dz — n(dx)€) + p(n(&) hoz — n(dz)hE)
R(z, ¢z)& = K(n(¢z)z — n(z)pz) + p(n(oz)hz — n(z)hoz).

These relations yield the following, by a straightforward calculation,
R(z,w)¢ = s(n(w)z — n(z)w) + p(n(w)hz — n(z)hw),

where k and 4 are non-constant smooth functions. Hence M is a generalized (, u)-contact
metric manifold.

Example 2. We consider the 3-dimensional manifold M = {(z1, zq, z3)eR?|z3 # 0} and
the vector fields
€] = — eg = ——, = _—
! oz’ 27 23201, 3 350,
We define £, g,n, ¢ by € = e1, g(e;, ;) = 65, (4,7 = 1,2,3) and ¢ge; = 0, pey = e3, peg = —ea.
Working as in the previous example we finally get that M(¢,&,n,9) is a generalized
(k, p)-contact metric manifold with K =1 — m—;g, pw=2(1+ %4—)

3,"36 Ozo | 138 Oz3



Let us give some more examples. Starting with the examples given previously we will
now construct new 3- dimensional generalized (, 11)-contact metric manifolds for any posi-
tive real number.

Let M(o,&,1n,g) be a 3-dimensional generalized (x, p)-contact metric manifold. By a
Dg-homothetic deformation [8] we mean a change of structure tensors of the form 7 =
an, &= (1—15, ¢=06 g=ag+ala—1)n®n, where a is a positive constant. It is well
known that M(¢,&,7,7) is also a contact metric manifold. Moreover the curvature tensor
R and the tensor h transform in the following manner (3], & = +h and

aR(z,y)é = R(z,y)§ + (a — 1)’ (n(y)z-— n(z)y)
—(a — 1){(Vz0)y — (Vyd)z + n(z)(y + hy) — n(y)(z + hz)},
for any z, yeX(M).
Additionally it is well known [9, pp. 446-447), that any 3-dimensional contact metric

manifold satisfies (Vz¢)y = g(z+hz,y)§—n(y)(z+ ha). Using the above relations we finally
obtain

_ - ktat-—-1,_ _ p+2a—-1), . = _ 7z
Rz, = “E5 =L () - ) + L (e — ()
for any x, yeX(M). So we have proved the following Theorem.

THEOREM 3.1. For any positive number, there erists a 3-dimensional generalized
(r, p)-contact metric manifold.

The case m > 1. Let M2™+1(¢,£,7, g) be a generalized (, p)-contact metric manifold
and B = {peM/r(p) = 1}. The set N = M — B is an open subset of M and thus
N2m+1(g € n g) is a contact metric manifold, which satisfies the equation (3.1) with k£ %# 1
everywhere.

LEMMA 3.2. The following relations are valid on N*™*1(¢,&,n, 9)

(3.2) I¢ — ¢l = 2uho,

(3.3) R =(k—-1)¢%, k<1

(3.4) R(¢, )y = &lg(z, v)€ — n(y)z] + plg(hz, y)§ — n(y)hz],
(Vzh)y — (Vyh)z = (1 — &)[2g(z, ¢y)& +n(z) ¢y — n(y)¢z

(3.5) +(1 — p)n(z)phy — n(y)¢hz],

(3.6) ¢k = 0.

for any z,yeX(N).

PROOF. The proof of (3.2)-(3.5) is similar to that of Lemma 3.1 of [3] and hence we
omit it. To prove (3.6), we operate (3.2) by ¢ and use (2.7) and (3.3) we get | = —re? +ph
and so through (2.8) we find

(3.7) Vel = —(£r)9” + (Ep)h + 1(Veh).
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Moreover from (2.9), (3.3) and | = —k¢? + ph we obtain
The use of (3.8) in (3.7) shows

(3.9) Vel = —(£r)¢ + (Ep)h + pPho.

Differentiating (2.7) along £ and using (3.8) we get ¢(Vel)¢p — V¢l = 0. This together with
(3.9) complete the proof of the Lemma.

LEMMA 3.3 For any vector fields z,y on a (2m + 1)-dimensional generalized (k, pt)-
contact metric manifold the following differantial equation is valid

(3.10)  (yx)¢’z — (zr)¢”y + (zp)hy — (yp)hz + (Ep) [n(y)ha — n(z)hy] = 0.
PROOF. Differentiating (3.1) along an arbitrary vector field z and using (2.6) we find

V. R(z,y)¢ = (2x)[n(y)z — n(z)y] + (zp) [n(y) hz + n(z) hy]
+[(n(V2y) — 9y, $2) — g(y, dh2))z + n(y)V.z

—(n(V.z) — gz, ¢2) — g(z, dh2))y + n(z) VY]
+u[(n(V.y) — 9(y, 92) — g(y, dh2))hz +n(y) V. hz
~(n(V.z) — g(z, ¢2) — g(z, dhz))hy + n(x)V:hyl.

The use of the last relation, (3.1) and (2.6) in Bianchi second identity yield to the following
relation, by a direct calculation,

By} {(28) [n(y)x — n(z)y] + (zp)[n(y) hz + n(z)hy]
+&[(7(V2y) — 9(y, $2) — 9(y, dh2))z +n(y) V.
—(n(V2z) — g(z, 92) — g(z, phz))y + n(z) V2]
+1n(V2y) — 9(y, $2) — 9(y, dh2))hz +1(y)V:hz
—(n(Vzz) — g(z, 92) — g(z, dhz))hy +n(z)V:hy|
—&[n(Y)Vzz — n(V.2)y] — pln(y)hV.z —n(V.z)hy|
—&[n(Vz2)y — 1(y)Vaz] — pn(Vaz)hy — n(y)hVz2]
+R(z,y)¢z + R(z,y)¢phz} =0,

where @y, 4,,} denotes the cyclic sum of x,y,z. Putting £ instead of z in the last relation
and using (3.4) and (3.6) we obtain

—(yr)z + (zr)y + [(Ep)n(y) — (wp)]he + [=(Eu)n(z) + (zu)]hy
+n(y)(Veh)z — pn(z)(Veh)y + u(Vzh)y — p(Vyh)z
+H—(zr)n(y) + (ye)n(z) + x(g(y, ohz) — g(z, hy))

+u(g(hz, ohy) — g(hy, hx) — g(hy, ) + g(hz, ¢y))I&
—pn(x)hVy& — un(y)hVz€ = 0. '
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Substituting (2.1), (2.5) and (3.5) in the last relation we finally get (3.10) and it completes
the proof of the Lemma. ' '

LEMMA 3.4. For any PeN there exist an open neighbourhood U of P and orthonormal

local vector fields z;, ¢z;,&,i = 1,---,m, defined on U, such as
(3.11) hzz =A${, hquz = —/\(ﬁﬂ';‘“ h&:o’ 'i: 1’...,'”1’r
where A = /1 — k.

PROOF. Using (3.3), we see that, at any point of N the tensor h has three eigenvalues;
0 with multiplicity 1, /1 — & with multiplicity m and —+/1 — k¥ with multiplicity m. The
function A = /1 — k is smooth on N. Let y1, -, Ym) Ym+1,"** » Y2m, Y2m+1, b€ a basis of
TpN,such that, hy; = My, e =1,---,m, hy; = -Ay;,;j=m+1,---,2m, yoms1 =& We
extend y,s to vector fields on N and define the vector fields w; = (h + Al)y; — Mp(y:)€,4 =
L---ym, w; = (h—=ADy; + A\n(y;)§,J = m+1,---,2m and §&. At P we have w; =
2Ay¢,z‘ =1,---,m, and Wy = _Qijaj :m+1v 52m' Thus Wi,y - -y Wy W1, "‘,TUZm,£
are linearly independent at P and hence in a neighbourhood U of P. At each point of U
we have

h‘LUi = h((h’ o /\I)yz - '\U(yz)f) = Aw‘i! 1= 17 T, I,
hw; = h((h = Al)y; + An(y;)§) = —Aw;, j=m+1,---,2m,
hé = 0.

The vector fields &, z; = ]%J and ¢z;,7 = 1,---,m, satisfy (3.11) and so the proof is
completed.

From now on, we will call the vector fields of Lemma 3.4 a local h-basis. We suppose
that {z;,¢z;,£},i=1,---,m, is a local h-basis on N. Substituting z = z;,y = ¢z; in (3.10)
we get
(3.12) AT = ik, —APzip = Pz, ,i=1,---,m.

Since m > 1, replacing z,y by z;, z;(i # j) respectively, equation (3.10) gives
(3.13) —Aip=zik, i=1: m.

Finally, substituting = ¢z;,y = ¢z;, (i # j), in (3.10) we have

(3.14) AOTip = dzi, 1=1,---,m.

By virtue of (3.6), (3.12), (3.13) and (3.14) we obtain

(3.15) zk=¢rik=(n=Tu=0¢zu=0, i=1---,m.
Considering the 1-form du and using (3.15) we have dp = ({4)7, and so

(3.16) 0= d’u = d(&p) An+ (Ep)dn.
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Using (3.15) and (3.16) we obtain d(¢u) = £(&u)n and so & = 0. This together with (3.15)
show that the functions & and p are constant on.N. Therefore by the continuity of &, u we
conclude that the functions &,y are constant on M. If £ =1 , then using h? = (k — 1)¢?,
which is valid on any (k, u)-contact metric manifold, we get h = 0 and so by (3.1) and
(2.10) M is Sasakian manifold.

So we have proved the following Theorem.

THEOREM 3.5. On a non Sasakian, generalized (K, jt)-contact metric manifold M*™+!
with m > 1, the functions k, pb are constant, i.e. M 2m+1 s a (K, p)-contact metric manifold.

Using Lemma 3.3, for the 3-dimentional case, and working as in the case m > 1, we
easily prove the following Theorem.

THEOREM 3.6. Let M be a non Sasakian, generalized (&, p)-contact metric manifold.
If &, u satisfy the condition ak + by = ¢ (a,b,c, constant), then K, i are constant.

REMARKS. 1. If K = u = 0, then R(z,y)¢ = 0 and such a contact metric manifold
M?2m+1 ig Jocally the product of a flat (m + 1)-dimensional manifold and an m-dimensional
manifold of constant curvature 4, [2].

2. Recently, we have been informed by D.E. Blair, that (#, s)-contact metric manifolds have
been classified, [4]. For the 3-dimensional case see also [3].

ACKNOWLEDGMENT. The authors thank the referee for his suggestions.

REFERENCES

1. D.E. Blair, Contact manifolds in Riemannian geometry. Lecture Notes in Mathematics 509, Springer-
Verlag, Berlin, 1976.

2. D.E. Blair, Two remarks on contact metric structures. Tohdku Mathematical Journal 29(1977), 319-
324.

3. D.E. Blair, T. Koufogiorgos and B. Papantoniou, Contact metric manifolds satisfying a nullity condi-
tion. Israel Journal of Mathematics 91 (1995), 189-214.

4. E. Boecks, A full classificafion of contact metric (k, j)-spaces, preprint.

5. F. Gouli-Andreou and P.J. Xenos, A class of contact metric 3-manifolds with £eN(k,p) and &, p
functions. To appear in Algebras Groups snd Geometries.

8. F. Gouli-Andreou and P.J. Xenos, Two classes of conformally flat contact metric 8-manifolds. To
appear in Journal of Geometry.

7. R. Sharma, On the curvature of contact metric manifolds. Journal of Geometry, 53(1995), 179-190.

8. S. Tanno, The topology of contact Riemannian manifolds. Tllinois Journal of Mathematics 12(1968),
' 700-717.

9. S.Tanno, Variational problems on contact Riemannian manifolds. Trans. A.M.S. 314(1989), 349-379.

Department of Mathematics

University of [oannina

Toannina 45110; Greece

email addresses: tkoufog@cc.uot.gr
ctsichli@cc.uoi.gr





